Монитор — периферийное устройство, предназначенное для визуального отображения информации. Конечно, монитор - важная часть персонального компьютера, но важна она именно для человека, а не для работы самого компьютера.
По типу внутреннего устройства (технологии) мониторы разделяют на:
- ЭЛТ — на основе электронно-лучевой трубки (англ. CRT — cathode ray tube)
- ЖК — жидкокристаллические мониторы (англ. LCD — liquid crystal display)
- Плазменный — на основе плазменной панели (англ. plasma display panel, PDP, gas-plazma display panel) ;
- Проектор — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал); и проекционный телевизор ;
- LED-монитор — на технологии LED (англ. light-emitting diode — светоизлучающий диод) ;
- OLED-монитор — на технологии OLED (англ. organic light-emitting diode — органический светоизлучающий диод) ;
- Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза ;
- Лазерный — на основе лазерной панели (пока только внедряется в производство) .
Современный монитор состоит из экрана (дисплея), блока питания, плат управления и корпуса. Информация для отображения на мониторе поступает с электронного устройства, формирующего видеосигнал (в компьютере —
видеокарта). В некоторых случаях в качестве монитора может применяться и
телевизор.
ЭЛТ-мониторы
Мониторы CRT (Cathode Ray Tube) – сейчас практически полностью исчезли с прилавков магазинов. Как видно из названия, в основе всех подобных мониторов лежит катодно-лучевая трубка, но это дословный перевод, технически правильно говорить электронно-лучевая трубка (ЭЛТ). Иногда CRT расшифровывается и как
Cathode Ray Terminal, что соответствует уже не самой трубке, а устройству, на ней основанному.
Используемая в этом типе мониторов технология была разработана немецким ученым Фердинандом Брауном в 1897г. и первоначально создавалась в качестве специального инструмента для измерения переменного
тока, то есть для осциллографа. Самым важным элементом
монитора является кинескоп, называемый также электроннолучевой трубкой. Кинескоп состоит из герметичной стеклянной трубки, внутри которой находится вакуум, то есть весь воздух удален. Один из концов трубки узкий и длинный - это горловина, а другой - широкий и достаточно плоский - это экран. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (
luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами.
Для создания изображения в
ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы. Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку создают пониженный уровень излучения. Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного
магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а другие две - в вертикальной.
До того, как монитор стал конструктивно законченным устройством, прошло много лет.
До пятидесятых годов компьютеры выводили информацию только на печатающие устройства. Интересно отметить, что достаточно часто компьютеры тех лет оснащались осциллографами, которые, однако, использовались не для вывода информации, а всего лишь для проверки электронных цепей вычислительной машины. Впервые в 1950 году в
Кембриджском университете (Англия) электронно-лучевая трубка осциллографа была использована для вывода графической информации на компьютере
EDSAC (Electronic Delay Storage Automatic Computer).
Примерно полтора года спустя английский ученый Кристофер Стретчи написал для компьютера «
Марк 1» программу, игравшую в шашки и выводившую информацию на экран. Однако это были лишь отдельные примеры, не носившие серьезного системного характера.
Реальный прорыв в представлении графической информации на экране дисплея произошел в Америке в рамках военного проекта на базе компьютера «Вихрь». Данный компьютер использовался для фиксации информации о вторжении самолетов в воздушное пространство США.
Первая демонстрация «Вихря» состоялась 20 апреля 1951 года — радиолокатор посылал информацию о положении самолета компьютеру, и тот передавал на экран положение самолета-цели, которая отображалась в виде движущейся точки и буквы T (Target). Это был первый крупный проект, в котором электронно-лучевая трубка использовалась для отображения графической информации.
Первые мониторы были векторными — в мониторах этого типа электронный пучок создает линии на экране, перемещаясь непосредственно от одного набора координат к другому. Соответственно нет необходимости разбивать в подобных мониторах экран на пикселы. Позднее появились мониторы с растровым сканированием. В мониторах подобного типа электронный пучок сканирует экран слева направо и сверху вниз, пробегая каждый раз всю поверхность экрана.
Следующей ступенькой развития мониторов явилось цветное изображение, для получения которого требуется уже не один, а три пучка, каждый из которых высвечивает определенные точки на поверхности дисплея.
В 1981 году компания
IBM начала поставлять монохромные мониторы с видеоадаптером (MDA), которые принесли компьютерам резкость цветов. Для цветной графики в IBM разработали адаптер CGA, который подключался к композитному видеомонитору или дисплею со специальным соединением RGB (модель IBM 5153). В 1984 году компания представила новый стандарт мониторов и адаптеров EGA , который принес более высокое разрешение, большее количество цветов и конечно же, новое качество видения. Долгое время у IBM не было достойных конкурентов.
К концу 80-х компьютерная революция была в самом разгаре. Производители ПК – компании
Apple,
Commodore, Radio Shack, TI – начали выпускать не просто мониторы, но даже трудились над их дизайном. Можно было купить не только монохромные, но и цветные устройства. Что было, разумеется, особым шиком.
Сейчас эти мониторы уже не используются в больших масштабах им на смену пришли более компактные LCD-мониторы.
ЖК-мониторы
Экраны
LCD-мониторов (
Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности
оптических), связанных с упорядоченностью в ориентации молекул. Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 г. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны.
Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации
RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы.
И вот в конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора –
цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация
Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире
калькулятор CS10A был произведен в 1964 г. именно этой корпорацией.
В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки.
Так, в 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.
В 1970-1980-x гг. «балом правили» ЭЛТ-мониторы, цена на LCD ещё долгое время была высокой. Лишь только с середины 1990-х ЖК-мониторы начинают не спеша отвоёвывать рынок.
В 1987 году компания Sharp разработала первый цветной жидкокристаллический дисплей диагональю 3 дюйма.
В конце 1999 года объем выпуска TFT-экранов достиг порядка 36 млн. единиц, в то время как в 1998 году их было изготовлено немногим более 20 млн.
Сейчас «плоские» мониторы полностью «подвинули» своих старших братьев – ЭЛТ-мониторов.
Работа жидкокристаллических матриц основана на таком свойстве света, как поляризация. Обычный свет является неполяризованным, т.е. амплитуды его волн лежат в огромном множестве плоскостей. Однако существуют вещества, способные пропускать свет только с одной плоскости. Эти вещества называют поляризаторами, поскольку прошедший сквозь них свет становится поляризованным только в одной плоскости. Если взять два поляризатора, плоскости поляризации которых расположены под углом 90° друг к другу, свет через них пройти не сможет. Если же расположить между ними что-то, что сможет повернуть вектор поляризации света на нужный угол, мы получим возможность управлять яркостью свечения, гасить и зажигать свет так, как нам хочется. Таков, если описывать вкратце, принцип работы ЖК-матрицы.
Многие производители продолжают инвестировать в создание новых мощностей по производству ЖК-панелей.
©green mile
Источники:
Compress.Ru,
Compuhome.Ru.
В начало