ЭВМHISTORY
Статьи. Обзоры. Истории
ЭВМHISTORY: учебник. Научная тематика, информатика, термины, понятия, базис

Космос | Радиоастрономия



Многие объекты Вселенной, включая Солнце, планеты, туманности, галактики, а в особенности такие необычные объекты, как, например, пульсары и квазары, излучают радиоволны, которые можно принимать с помощью современной техники. Измерением и анализом радиоизлучения космических источников занимается специальный раздел астрономии — радиоастрономия.

radioastronomie, радиоастрономия
Эллипсоидальный радиотелескоп «Марк II» размерами 25х36 м, входящий в систему MERLIN (Великобритания)

Радиоволны, как и видимый свет, представляют собой электромагнитные колебания, но длина волны у них неизмеримо больше, чем у световых волн. Радиоастрономы обычно работают в диапазоне длин волн от нескольких миллиметров до 15—20 м. более длинноволновое и более коротковолновое излучение не пропускает земная атмосфера, и для его приёма необходимо выносить аппаратуру в космос.

От изобретения радио до открытия космического радиоизлучения прошло несколько десятилетий. Причина в том, что радиоизлучение космических объектов исключительно слабое, поэтому для его исследования необходимы очень чувствительные приборы и огромные приёмные антеннырадиотелескопы.

radioastronomie, радиоастрономия
Радиотелескоп РАТАН-600 (Россия)

Рождение новой науки


Впервые космическое радиоизлучение обнаружил в 1932 г. американский инженер Карл Янский. Он тогда исследовал радиопомехи, мешавшие работе трансатлантического беспроводного телефона. Для этих целей была построена большая однонаправленная антенна: специальная металлическая рама, закреплённая на поворотном устройстве — карусели. Размеры конструкции составляли 30,5 м в длину и 3,7 м в высоту. Антенну можно было сориентировать в нужном направлении и изучать приходящее радиоизлучение. Работа велась на волне 14,6 м.

radioastronomie, радиоастрономия
Карл Янский рядом с антенной, с помощью которой он открыл космическое радиоизлучение

Янский быстро выяснил, что треск и щелчки в наушниках, мешавшие связи, были вызваны ближними и дальними грозовыми разрядами. Но кроме этих помех он уловил постоянное негромкое шипение, которое усиливалось и ослабевало с периодом 23 ч 56 мин. Это время равно звёздным суткам — периоду обращения Земли вокруг собственной оси. Направленность антенны Янского была довольно низкой, он мог определять положение источника радиоизлучения с точностью лишь около 30°. Тем не менее Янский установил, что «паразитное» радиоизлучение приходит из космоса — от Млечного Пути, причём наибольшая интенсивность его наблюдается в направлении центра нашей Галактики. Результаты своих исследований Янский опубликовал в статье «Электрические помехи внеземного происхождения».

Открытие Янского не сразу было замечено астрономами. Только в 1939 г. другой американский радиоинженер, Гроут Ребер, построивший на собственные средства антенну с параболическим рефлектором диаметром 9,5 м, снова зарегистрировал радиоизлучение Млечного Пути на волне 1,87 м. В течение пяти лет Ребер проводил систематические измерения и в 1942 г. издал первую радиокарту всего северного неба. На ней кроме обнаруженного Янским мощного радиоисточника в центре Галактики отмечено ещё несколько более слабых источников. Они находятся в созвездиях Лебедя, Кассиопеи, Большого Пса, Кормы и Единорога.

В отличие от Янского, который поместил статью в техническом журнале, Ребер направил свою работу в ведущее астрономическое издание — «Астрофизический журнал» («Astrophysical Journal»). Статья Ребера привлекла, наконец, внимание астрономов и радиофизиков, и сразу после окончания Второй мировой войны новая наука — радиоастрономия — стала быстро развиваться.


Эпоха открытий


Астрономы и инженеры поняли, что для измерения космического радиоизлучения нужны радиотелескопы гораздо больших размеров, чем антенны Янского и Ребера. Уже в 1947 г. в Великобритании, в университете города Манчестера, был построен неподвижный параболический радиотелескоп диаметром 66 м. В 1950 г. с его помощью удалось зафиксировать слабое радиоизлучение от туманности в созвездии Андромеды, которая является соседней с нами спиральной галактикой. В 1957 г. вблизи Манчестера, в местечке Джодрелл-Бэнк, сооружён поворачивающийся 7б-метровый радиотелескоп. В 1961 г. вступил в строй 64-метровый радиотелескоп в Парксе (Австралия), а в 19б2 г. —'92-метровый меридианный радиотелескоп на обсерватории Грин-Бэнк в США.

Увеличение размеров радиотелескопов повысило их чувствительность, а также привело к улучшению углового разрешения (оно характеризует угловые размеры самых мелких наблюдаемых деталей). Разрешение тем выше, чем меньше отношение длины волны к диаметру телескопа. Таким образом, благодаря большому диаметру радиоантенны можно получить более «резкое» изображение радиоисточника на данной длине волны.

Уже в 50-е гг. для достижения более высокого углового разрешения астрономы стали использовать радиоинтерферометры — системы из нескольких радиотелескопов, соединённых электрическими связями. Благодаря этому удалось определить точные координаты радиоисточника Кассиопея А и отождествить источник Лебедь А с удалённой двойной галактикой. Австралийские исследователи с помощью морского интерферометра, в котором вместо второго радиотелескопа использовался сигнал, отражённый от морской поверхности, отождествили несколько новых радиоисточников: Телец А — с Крабовидной туманностью, Центавр А и Деву А — с далёкими галактиками.

Эти открытия, следовавшие одно за другим, обескураживали астрономов. Почему ближайшая галактика в созвездии Андромеды излучает в радиодиапазоне в миллион раз меньше энергии, чем далёкая галактика в созвездии Лебедя? Как объяснить радиоизлучение Млечного Пути — места концентрации звёзд, газа и пыли в нашей Галактике? Простое сложение излучения звёзд Млечного Пути не давало нужного результата, поскольку обычные звёзды типа нашего Солнца в спокойном состоянии излучают очень мало энергии в радиодиапазоне. Радиоизлучение Солнца к тому времени было измерено и хорошо изучено. Пришлось признать, что астрономические объекты устроены во многом не так, как казалось на основании одних только оптических исследований. Уже к концу 50-х гг. стало ясно, что радиоастрономы открыли новую, невидимую Вселенную.

В 60-е — начале 70-х гг. были открыты квазары, пульсары, межзвёздные мазеры, реликтовое радиоизлучение, обнаружены взрывы звёзд, столкновения целых звёздных систем — галактик. Получила развитие теория механизмов радиоизлучения — теплового, синхротронного, мазерного (от слова «мазер» - квантовый генератор).

radioastronomie, радиоастрономия
Радиоизлучение Юпитера. Видны радиационные пояса

В настоящее время радиоастрономия находится на переднем фронте астрофизических исследований. Обладая самыми чувствительными приёмниками излучения, она изучает наиболее далёкие объекты во Вселенной.

Современная радиоастрономия обеспечивает и наивысшее угловое разрешение — способность видеть мельчайшие детали строения небесных радиоисточников. Высокочувствительные и высококачественные радиоастрономические исследования разнообразных уникальных и во многом ещё загадочных объектов Вселенной, несомненно, принесут новые захватывающие открытия.

© Михаил Попов

Источники:

Энциклопедия Аванта+, том 8, «Астрономия».


В начало


Космос | Радиоастрономия




Рейтинг@Mail.ru Яндекс.Метрика