ЭВМHISTORY
Статьи. Обзоры. Истории
ЭВМHISTORY: история и развитие процессоров, чипсетов, звуковых систем, оперативной памяти, видеоадаптеров и т.д.

Компоненты ПК | Интегральная схема (Микросхема, Микрочип)



microcircuit, micro, circuit, интегральная, схема, микросхема, микрочип

Интегральная (микро)схема (ИС, ИМС, м/сх), микросхема, чип (англ. chip — тонкая пластинка — первоначально термин относился к пластинке кристалла микросхемы) — микроэлектронное устройство — электронная схема произвольной сложности (кристалл), изготовленная на полупроводниковой подложке (пластине или плёнке) и помещённая в неразборный корпус или без такового, в случае вхождения в состав микросборки.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) — ИС, заключённую в корпус. В то же время выражение чип-компоненты означает «компоненты для поверхностного монтажа» (в отличие от компонентов для пайки в отверстия на плате).


Вступление


Появление этих схем, собственно, не было каким-то принципиально новым изобретением — оно прямо вытекало из логики развития полупроводниковых приборов. Поначалу, когда полупроводниковые элементы только входили в жизнь, каждый транзистор, резистор или диод использовался по отдельности, то есть заключался в свой индивидуальный корпус и включался в схему при помощи своих индивидуальных контактов. Так поступали даже в тех случаях, когда приходилось собирать множество однотипных схем из одних и тех же элементов. Но постепенно пришло понимание того, что подобные устройства рациональнее не собирать из отдельных элементов, а сразу изготавливать на одном общем кристалле, тем более что полупроводниковая электроника создавала для этого все предпосылки.

В самом деле, все полупроводниковые элементы по своему устройству очень похожи друг на друга, имеют одинаковый принцип действия и различаются только взаиморасположением p-n областей. Эти p-n области, как мы помним, создаются путем внесения однотипных примесей в поверхностный слой полупроводникового кристалла. Причем надежная и со всех точек зрения удовлетворительная работа подавляющего большинства полупроводниковых элементов обеспечивается при толщине поверхностного рабочего слоя в тысячные доли миллиметра. В самых миниатюрных транзисторах обычно используется только верхний слой полупроводникового кристалла, составляющий всего 1% его толщины. Остальные 99% выполняют роль носителя или подложки, так как без подложки транзистор просто мог разрушиться от малейшего прикосновения. Следовательно, используя технологию, применяемую для изготовления отдельных электронных компонентов, можно сразу создать на одном кристалле законченную схему из нескольких десятков, сотен и даже тысяч таких компонентов. Выигрыш от этого будет огромный.

Во-первых, сразу снизятся затраты (стоимость микросхемы обычно в сотни раз меньше, чем совокупная стоимость всех электронных элементов ее составляющих).

Во-вторых, такое устройство будет гораздо надежнее (как показывает опыт, в тысячи и десятки тысяч раз), а это имеет колоссальное значение, поскольку поиск неисправности в схеме из десятков или сотен тысяч электронных компонентов превращается в чрезвычайно сложную проблему.

В-третьих, из-за того, что все электронные элементы интегральной микросхемы в сотни и тысячи раз меньше своих аналогов в обычной сборной схеме, их энергопотребление намного меньше, а быстродействие — гораздо выше.


История


Ключевым событием, возвестившем приход интегрализации в электронику, явилось предложение американского инженера Дж. Килби из фирмы "Texas Instruments" получать эквивалентные элементы для всей схемы, такие как регистры, конденсаторы, транзисторы и диоды в монолитном куске чистого кремния. Первую интегральную полупроводниковую схему Килби создал летом 1958 года.

6 февраля 1959 года Федеральное патентное ведомство США выдало патент на изобретение интегральной микросхемы компании Texas Instruments. Тем самым было официально признано рождение технологии, не будь которой, мы сегодня не имели бы под рукой подавляющего большинства привычных нам электронных приборов и связанных с ними возможностей.

Уже в 1961 году фирма "Fairchild Semiconductor Corporation" выпустила первые серийные микросхемы для ЭВМ: схему совпадений, полусдвигающий регистр и триггер. В том же году производство полупроводниковых интегральных логических схем освоила фирма "Texas". В следующем году появились интегральные схемы других фирм. В короткое время в интегральном исполнении были созданы различные типы усилителей.

В 1962 году фирма RCA разработала интегральные микросхемы матриц памяти для запоминающих устройств ЭВМ. Постепенно выпуск микросхем был налажен во всех странах — эра микроэлектроники началась.

microcircuit, micro, circuit, интегральная, схема, микросхема, микрочип

Роберт Нойс, работавший в компании Fairchald Semiconductor (он являлся и одним из основателей этой фирмы) практически одновременно и независимо от Килби разработал свой вариант конструкции интегральной микросхемы, запатентовал его и… вверг на 10 лет Texas Instruments и Fairchald Semiconductor в непрерывную патентную войну, завершившуюся 6 ноября 1969 года решением апелляционного суда США по делам патентов и таможенных сборов, согласно которому единственным изобретателем микросхемы должен считаться… Роберт Нойс! Верховный суд США подтвердил это решение.

Впрочем, ещё до вынесения судебного вердикта, в 1966 году, компании договорились о признании друг за другом равных прав на интегральную микросхему, а оба изобретателя — Килби и Нойс были удостоены одинаковых высших наград научного и инженерного сообществ США: National Medal of Science и National Medal of Technology.

Исходным материалом для интегральной микросхемы обычно служит необработанная пластина из чистого кремния. Она имеет сравнительно большие размеры, так как на ней одновременно изготавливают сразу несколько сотен однотипных микросхем. Первая операция состоит в том, что под воздействием кислорода при температуре 1000 градусов на поверхности этой пластины формируют слой двуокиси кремния. Оксид кремния отличается большой химической и механической стойкостью и обладает свойствами прекрасного диэлектрика, обеспечивающего надежную изоляцию расположенному под ним кремнию.

Следующий шаг — внесение примесей для создания зон p или n проводимости. Для этого оксидную пленку удаляют с тех мест пластины, которые соответствуют отдельным электронным компонентам. Выделение нужных участков происходит с помощью процесса, получившего название фотолитографии. Сначала весь слой оксида покрывают светочувствительным составом (фоторезистом), который играет роль фотографической плёнки — его можно засвечивать и проявлять. После этого через специальный фотошаблон, содержащий рисунок поверхности полупроводникового кристалла, пластину освещают ультрафиолетовыми лучами. Под воздействием света на слое оксида формируется плоский рисунок, причем незасвеченные участки остаются светлыми, а все остальные — затемненными.

В том месте, где фоторезистор подвергся действию света, образуются нерастворимые участки пленки, стойкие к кислоте. Затем пластину обрабатывают растворителем, который удаляет фоторезист с засвеченных участков. С открывшихся мест (и только с них) слой оксида кремния вытравливают с помощью кислоты. В результате в нужных местах оксид кремния растворяется и открываются "окна" чистого кремния, готовые к внесению примесей (лигированию). Для этого поверхность подложки при температуре 900–1200 градусов подвергают воздействию нужной примеси, например, фосфора или мышьяка, для получения проводимости n-типа. Атомы примеси проникают в глубь чистого кремния, но отталкиваются его оксидом.

Обработав пластину одним видом примеси, готовят ее для лигирования другим видом — поверхность пластины вновь покрывают слоем оксида, проводят новую фотолитографию и травление, в результате чего открываются новые "окошки" кремния. Вслед за тем следует новое лигирование, например бором, для получения проводимости p-типа. Так на всей поверхности кристалла в нужных местах образуются p и n области. (Изоляция между отдельными элементами может создаваться несколькими способами: такой изоляцией может служить слой оксида кремния, можно также создавать в нужных местах запирающие p-n переходы.)

Следующий этап обработки связан с нанесением токопроводящих соединений (токопроводящих линий) между элементами интегральной схемы, а также между этими элементами и контактами для подключения внешних цепей. Для этого на подложку напыляют тонкий слой алюминия, который оседает в виде тончайшей пленки. Ее подвергают фотолитографической обработке и травлению, аналогичным описанным выше. В результате от всего слоя металла остаются только тонкие токопроводящие линии и контактные площадки.

В заключение всю поверхность полупроводникового кристалла покрывают защитным слоем (чаще всего, силикатным стеклом), который затем удаляют с контактных площадок. Все изготовленные микросхемы подвергаются строжайшей проверке на контрольно-испытательном стенде. Дефектные схемы помечаются красной точкой. Наконец кристалл разрезается на отдельные пластинки-микросхемы, каждая из которых заключается в прочный корпус с выводами для присоединения к внешним цепям.

Сложность интегральной схемы характеризуется показателем, который получил название степени интеграции. Интегральные схемы, насчитывающие более 100 элементов, называются микросхемами с малой степенью интеграции; схемы, содержащие до 1000 элементов, — интегральными схемами со средней степенью интеграции; схемы, содержащие до десятка тысяч элементов, — большими интегральными схемами. Уже изготавливаются схемы, содержащие до миллиона элементов (они называются сверхбольшими). Постепенное повышение интеграции привело к тому, что схемы с каждым годом становятся все более миниатюрными и соответственно все более сложными.

Огромное количество электронных устройств, имевших раньше большие габариты, умещаются теперь на крошечной кремниевой пластинке. Чрезвычайно важным событием на этом пути стало создание в 1971 году американской фирмой "Intel" единой интегральной схемы для выполнения арифметических и логических операций — микропроцессора. Это повлекло за собой грандиозный прорыв микроэлектроники в сферу вычислительной техники.

microcircuit, micro, circuit, интегральная, схема, микросхема, микрочип

В качестве характеристики технологического процесса производства микросхем указывают минимальные контролируемые размеры топологии фотоповторителя (контактные окна в оксиде кремния, ширина затворов в транзисторах и т. д.) и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости с рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами фотолитографии, методами вытравливания и напыления.

В 1970-х годах минимальный контролируемый размер серийно производимых микросхем составлял 2-8 мкм, в 1980-х он был уменьшен до 0,5-2 мкм.

В 1990-х годах стали внедряться в производство и быстро совершенствоваться экспериментальные методы: в начале 1990-х процессоры (например, ранние Pentium и Pentium Pro) изготавливали по технологии 0,5-0,6 мкм (500-600 нм), потом технология дошла до 250—350 нм. Следующие процессоры (Pentium II, K6-2+, Athlon) уже делали по технологии 180 нм. В 2002-2004 годах были освоены техпроцессы 90 нм (Winchester AMD 64, Prescott Pentium 4).

Следующие процессоры изготавливали с использованием УФ-излучения (эксимерный лазер ArF, длина волны 193 нм). В среднем внедрение лидерами индустрии новых техпроцессов по плану ITRS происходило каждые 2 года, при этом обеспечивалось удвоение количества транзисторов на единицу площади: 45 нм (2007), 32 нм (2009), 22 нм (2011), 14 нм (2014).

© greenmile

Источники:

Mycelebrities.Ru,
Www.Computerra.Ru,
Ru.Wikipedia.Org.


В начало


Компоненты ПК | Интегральная схема (Микросхема, Микрочип)



Рейтинг@Mail.ru Яндекс.Метрика